

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4728

Mechanics 1

Thursday

16 JUNE 2005

Afternoon

1 hour 30 minutes

Additional materials:

Answer booklet
Graph paper
List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by g m s⁻². Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1

A light inextensible string has its ends attached to two fixed points A and B. The point A is vertically above B. A smooth ring R of mass m kg is threaded on the string and is pulled by a force of magnitude 1.6 N acting upwards at 45° to the horizontal. The section AR of the string makes an angle of 30° with the downward vertical and the section BR is horizontal (see diagram). The ring is in equilibrium with the string taut.

(i) Give a reason why the tension in the part AR of the string is the same as that in the part BR. [1]

(ii) Show that the tension in the string is 0.754 N, correct to 3 significant figures.

(iii) Find the value of m.

[3]

[3]

2

Particles A and B, of masses $0.2 \,\mathrm{kg}$ and $0.3 \,\mathrm{kg}$ respectively, are attached to the ends of a light inextensible string. Particle A is held at rest at a fixed point and B hangs vertically below A. Particle A is now released. As the particles fall the air resistance acting on A is $0.4 \,\mathrm{N}$ and the air resistance acting on B is $0.25 \,\mathrm{N}$ (see diagram). The downward acceleration of each of the particles is $a \,\mathrm{m \, s^{-2}}$ and the tension in the string is $T \,\mathrm{N}$.

(i) Write down two equations in a and T obtained by applying Newton's second law to A and to B.

14

(ii) Find the values of a and T.

[3]

Two small spheres P and Q have masses 0.1 kg and 0.2 kg respectively. The spheres are moving directly towards each other on a horizontal plane and collide. Immediately before the collision P has speed 4 m s^{-1} and Q has speed 3 m s^{-1} . Immediately after the collision the spheres move away from each other, P with speed $u \text{ m s}^{-1}$ and Q with speed $(3.5 - u) \text{ m s}^{-1}$.

(i) Find the value of
$$u$$
. [4]

After the collision the spheres both move with deceleration of magnitude $5 \,\mathrm{m\,s^{-2}}$ until they come to rest on the plane.

- (ii) Find the distance PQ when both P and Q are at rest. [4]
- A particle moves downwards on a smooth plane inclined at an angle α to the horizontal. The particle passes through the point P with speed $u \, \text{m s}^{-1}$. The particle travels 2 m during the first 0.8 s after passing through P, then a further 6 m in the next 1.2 s. Find
 - (i) the value of u and the acceleration of the particle, [7]
 - (ii) the value of α in degrees. [2]

5

Two small rings A and B are attached to opposite ends of a light inextensible string. The rings are threaded on a rough wire which is fixed vertically. A is above B. A horizontal force is applied to a point P of the string. Both parts AP and BP of the string are taut. The system is in equilibrium with angle $BAP = \alpha$ and angle $ABP = \beta$ (see diagram). The weight of A is 2 N and the tensions in the parts AP and BP of the string are 7 N and T N respectively. It is given that $\cos \alpha = 0.28$ and $\sin \alpha = 0.96$, and that A is in limiting equilibrium.

- (i) Find the coefficient of friction between the wire and the ring A. [7]
- (ii) By considering the forces acting at P, show that $T \cos \beta = 1.96$. [2]
- (iii) Given that there is no frictional force acting on B, find the mass of B. [3]

- A particle of mass 0.04 kg is acted on by a force of magnitude PN in a direction at an angle α to the upward vertical.
 - (i) The resultant of the weight of the particle and the force applied to the particle acts horizontally. Given that $\alpha = 20^{\circ}$ find
 - (a) the value of P, [3]
 - (b) the magnitude of the resultant, [2]
 - (c) the magnitude of the acceleration of the particle. [2]
 - (ii) It is given instead that P = 0.08 and $\alpha = 90^{\circ}$. Find the magnitude and direction of the resultant force on the particle. [5]

7

A car P starts from rest and travels along a straight road for 600 s. The (t, v) graph for the journey is shown in the diagram. This graph consists of three straight line segments. Find

- (i) the distance travelled by P, [3]
- (ii) the deceleration of P during the interval 500 < t < 600. [2]

Another car Q starts from rest at the same instant as P and travels in the same direction along the same road for 600 s. At time t s after starting the velocity of Q is $(600t^2 - t^3) \times 10^{-6}$ m s⁻¹.

- (iii) Find an expression in terms of t for the acceleration of Q. [2]
- (iv) Find how much less Q's deceleration is than P's when t = 550. [2]
- (v) Show that Q has its maximum velocity when t = 400. [2]
- (vi) Find how much further Q has travelled than P when t = 400. [6]

1	(i)	R is smooth	B1	1	
	(ii)		M1		For resolving forces horizontally to obtain an equation in <i>T</i> (requires 3 relevant terms and at least one force resolved)
		$T + T\cos 60^{\circ} = 1.6\cos 45^{\circ}$	A1		
		Tension is 0.754 N AG	A1	3	
	(iii)	$mg = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ m = 0.182	M1 A1 ft A1	3	For resolving forces vertically to obtain an equation for <i>m</i> (requires 3 relevant terms with both <i>T</i> and the 1.6 N force resolved) ft sin/cos mix from (ii)
					SR $m = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ M1 $m = 1.78$ B1
		49000 (1000) (1000) (1000)			
2	(i)		M1		For applying $F = ma$ (requires at least ma , T and air resistance in linear
			A1		combination in at least one equation). At least one equation with not more than one error.

2	(i)		M1 A1		For applying $F = ma$ (requires at least ma , T and air resistance in linear combination in at least one equation). At least one equation with not more than one error.
		$\begin{vmatrix} 0.2g + T - 0.4 = 0.2a \\ 0.3g - T - 0.25 = 0.3a \end{vmatrix}$	A1 A1	4	SR $0.2g - T - 0.4 = 0.2a$ and $0.3g + T - 0.25 = 0.3a$ B1
	(ii)		M1		For obtaining an equation in T or a only, either by eliminating a or T from the equations in (i) or by applying $F = ma$ to the complete system
		0.5g - 0.65 = 0.5a or 5T - 0.7 = 0	A1 ft		For a correct equation in a only or T only ft opposite direction of T only
		a = 8.5 and $T = 0.14$ (positive only)	Al	3	

3	(i)	Momentum before=0.1×4 –	B1	or Loss by $P = 0.1 \times 4 + 0.1u$
		$\begin{array}{c} 0.2 \times 3 \\ \text{Momentum after} = \\ -0.1u + 0.2(3.5 - u) \end{array}$	B1	or Gain by $Q = 0.2(3.5 - u) + 0.2 \times 3$
		$\begin{vmatrix} 0.1 \times 4 - 0.2 \times 3 = \\ -0.1u + 0.2(3.5 - u) \end{vmatrix}$	M1	For using the principle of conservation of momentum
		u = 3 (positive value only)	A1 4	
				SR If mgv used for momentum instead of mv, then $u = 3$ B1
	(ii)		MI	For using $v^2 = u^2 + 2as$ with $v = 0$ (either case) or equivalent equations
		$0 = 3^2 - 10s_1$ and $0 = 0.5^2 - 10s_2$	A1 ft	ft value of u from (i)
		0.9 + 0.025	M1	For using $PQ = s_1 + s_2$
		Distance is 0.925 m cao	A1 4	

4	(i) α		MI		For using $s = ut + \frac{1}{2} at^2$ for the
					first stage
		$2 = 0.8u + \frac{1}{2} a(0.8)^2$	A1		
			MI		For obtaining another
		$8 = 2u + \frac{1}{2}a2^2$ or			equation in <i>u</i> and <i>a</i> with
		$6 = 1.2(u + 0.8a) + \frac{1}{2} a(1.2)^2$ or	A1		relevant values of velocity,
		$6 = 1.2(2 \times 2 \div 0.8 - u) + \frac{1}{2} a(1.2)^2$			displacement and time
			M1		For eliminating a or u
		u=1.5	A1		
		Acceleration is 2.5 ms ⁻²	A1	7	
	(i) β		M1		For using $s = vt - \frac{1}{2} at^2$ for
	ļ	2			the first stage
		$2 = 0.8v - \frac{1}{2}a(0.8)^2$	A1		7
			M1		For using $s = ut + \frac{1}{2} at^2$ for
		(1.2) +1/ (1.2)2	A 1		the second stage
		$6 = 1.2v + \frac{1}{2}a(1.2)^2$	A1 M1		Ear abtaining values of a
			IVII		For obtaining values of a and v and using $v = u + at$
					for first stage to find u
		Acceleration is 2.5 ms^{-2} ($v =$	A1		for first stage to find u
		3.5)	A1	7	
		u=1.5	1	•	
	(i) γ	2÷0.8 ms ⁻¹ and 6÷1.2 ms ⁻¹	M1		For finding average speeds
	(.)				in both intervals
		$= 2.5 \text{ ms}^{-1} \text{ and } 5 \text{ms}^{-1}$	A1		
		$t_1 = 0.4$ and $t_2 = (0.8 +) 0.6$	B 1		For finding mid-interval
					times
		5 = 2.5 + a (1.4 - 0.4)	M1		
					For using $v = u + at$
		2			between
l	l	Acceleration is 2.5 ms ⁻²	A1		the mid-interval times

	$2.5 = u + 2.5 \times 0.4 \text{ or}$ $5 = u + 2.5 \times 1.4$	M1		
	u=1.5	A1	7	For using $v = u + at$ between t = 0 and one of the mid- interval times
(ii)	$2.5 = 9.8\sin\alpha$ $\alpha = 14.8^{\circ}$	M1 A1ft	2	For using $(m)a = (m)g\sin\alpha$ ft value of acceleration

5	(i)		M1		For resolving forces on A vertically (3 terms)
		$F = 2 + 7\cos\alpha$ F = 3.96 (may be implied)	A1		
		r – 3.90 (may be implied)	A1		
		$N = 7\sin\alpha$	M1		For resolving forces on A
	,	N = 6.72 (may be implied)	Al		horizontally (2 terms)
		$3.96 = \mu 6.72$	M1		For using $F = \mu N$
		Coefficient is 0.589 or 33/56 cao	A1	7	,
	(ii)	$T\cos\beta = 7\cos\alpha$	MI		For resolving forces at <i>P</i> vertically (2 terms)
		$T\cos\beta = 7 \times 0.28 \ (= 1.96 \ AG)$	A1	2	
	(iii)		M1		For resolving forces on B
					vertically (2 terms)
		$T\cos\beta - mg = 0$	A1		
		Mass is 0.2 kg	A1	3	

6	(i)(a)	$V = P\cos 20^{\circ} - 0.04g$	BI		
			M1		For setting $V = 0$
-		P = 0.417	A1	3	
	(i)(b)	$R = P\sin 20^{\circ}$	MI		For using <i>R</i> = horizontal component of <i>P</i>
		Magnitude is 0.143 N	A1ft	2	ft value of P
	(i)(c)	0.143 = 0.04a	MI		For using Newton's second law
		Acceleration is 3.57 ms ⁻²	Alft	2	ft magnitude of the resultant
	(ii)	$R^2 = 0.08^2 + (0.04g)^2$	MI		For using $R^2 = P^2 + W^2$
		Magnitude is 0.400 N (or 0.40 or	Al		
	-	0.4)			
	1	$\tan \theta = +/-0.04g/0.08 \text{ or}$	M1		For using $\tan \theta = Y/X$ or
		$\tan(90^{\circ} - \theta) = +/-0.08/0.04g$			$\tan(90^{\circ} - \theta) = X/Y$
		Angle made with horizontal is			
		78.5° or 1.37 radians, or angle made with vertical is 11.5° or 0.201 radians	A1		
		Downwards or below	В1	5	Direction may alternatively be
		horizontal	<i>D</i> .	5	shown clearly on a diagram or
					, , ,
					given as a bearing

7	(i)		M1		For using the idea that the area of the quadrilateral represents distance
		$\frac{1}{2}200 \times 16 + 300 \times \frac{1}{2}(16 + 25)$			
		+	A1		
		½ 100×25 (=1600 + 6150 +		_	
		1250)	A1	3	
		Distance is 9000m			
	(ii)	a = (0 - 25)/(600 - 500)	M1		For using the idea that gradient
					(= vel ÷ time) represents
		Deceleration is 0.25 ms ⁻²	A 1		acceleration Or for using v = u + at
		Deceleration is 0.25 ms	Al	2	Of for using v – u + at
					Allow acceleration = - 0.25 ms ⁻²
	(iii)	Acceleration is $(1200t - 3t^2) \times 10^{-6}$	MI Al	2	For using $a(t) = \dot{v}(t)$
}	(iv)	0.25 - 0.2475	M1		For using 'ans(ii) – $ a_0(550) $ '
	(10)	Amount is +/- 0.0025 ms ⁻²	Alft	2	ft ans(ii) only
	(v)	$1200t - 3t^2 = 0$	MI		For solving $a_Q(t) = 0$ or for finding $a_Q(400)$
		$t = (0 \text{ or}) 400$ \mathbf{AG}	A1	2	Or for obtaining $a_Q(400) = 0$
[(vi)		M1		For correct method for $s_P(400)$
		1/2 200 × 16 + 200 × 1/2 (16 + 22)	A1		
		$s_{\rm Q}(t) = (200t^3 - t^4/4) \times 10^{-6} \ (+C)$	M1		For using $s_Q(t) = \int v_Q dt$
		6400 – 5400	A1 M1		For using correct limits and
			1411		finding
		Distance is 1000 m			$ s_{Q}(400) - s_{P}(400) $
			A1	6	